Chapter 2

Ok, now that we know all the hamsters are spinning there wheels in the same direction, let’s add some more to our Euphoria cradle, and make it look a bit more like Mr. Crenshaw’s example. I do want to stress again that this book uses a different CPU, a different programming language, a different assembly output, and a different author. Though I will kind of have similar looking code [there is only so many ways to get to get to Tipperary]. The code in this book wont be an exact clone of the other book.

We are going to start making our code look more “object oriented.” By adding Expression() at the start [well bottom] of our program to proceess what we get from Init(), which calls GetChar() procedure, to call getc() procedure, to grab some input to work with. The Expression() procedure, will call GetNum() a conditional function, to process the input, and do something very important. If we type in something we shouldn’t, we now have the beginngs of an error trapping system that will refuse to process something it doesn’t understand, and abort. It will also give you some idea as to what it thought went went wrong. A must for any compiler!

By the way I hope to figure out how to do flow charts [or get a volunteer] to include with this ebook, to help you understand the overall process of how a program gets from here to there, and understand how a computer “thinks.” It is important to note that what order you put your code will have a drastic outcome on the program. The computer will read in the code from the top down. That’s why the first calls are at the bottom. GetChar() has to be before Init(). Expression() is very depenent on the order of the code that supports it. [I know this first hand because I got enough grey hairs figuring out the rite order on a lot of programs.] Enough yap, let’s code!

-- cradle2a.ex

include get.e -- for get character functions

include wildcard.e -- for upper()

with trace

--trace(1) -- output to screen

constant

 alpha = "ABCDEFGHIJKLMNOPQRSTUVWXYZ", -- Define alphas

 nums = "0123456789"
-- Define numerics

 object Look
-- Look ahead character

procedure GetChar()
-- this grabs a line of characters

 Look = getc(0)

 -- this will prosess one character at a time if looped

end procedure

function IsAlpha(object c) -- Recognize an Alpha Character

 return find(upper(c),alpha)

end function

function IsDigit(object c) -- Recognize a Decimal Digit

 return find(c,nums)

end function

procedure Error(sequence s) -- Report an Error

 puts(1,"\n Error: " & s & ".")

end procedure

procedure Abort(sequence s) -- Report Error and Halt

atom x

 Error(s) -- call to get the error

 x = wait_key() -- wait so you can see results

 abort(1) -- when using Windows or Linux

end procedure

procedure Expected(sequence s) -- Report What Was Expected

 Abort(s & " Expected")

end procedure

function GetNum() -- Get a Number

object x -- check for error and return results

 if not find(Look,nums) then Expected("Integer")

 end if

 x = Look

 return x

end function

procedure Init() -- Initialize

 GetChar() -- grab a character

end procedure

procedure Expression() -- output assembly code for numerics

 puts(1, "MOVE # " & GetNum() & " D0 \n")

end procedure

-- start

 puts(1, "Input a line of characters \n") -- ask for imput

 Init() -- call initialison procedure

 Expression() -- check for and process numbers

All right let’s look at what we have in our new cradle2a.ex As before we have the 2 include files [wich are read first by Euphoria], the trace function [if needed], the constant declarations, the look ahead object, the GetChar(), (we are going to bypass the functions for now, but leave them because we’ll get back to them.) then comes our new error trapping code. First is Error()witch is called by Abort(),witch is called by Expected(), witch will be called only if the compiler runs into something it doesn’t know what to do with. Right now that’s everything but single numbers. Also instead of using the if [something] then [do something] logic, we’re now using reverse[also called negative] logic. If not [something] then [do something else]. The reason is it makes error checking simple. If it’s NOT what’s expected then consider it an error. Next we have Expression() whitch, after running whatever GetChar() snags through our error check, sends it out to where we want it. A CPU register D0 (we’ll update the assembly code later). Last we have our whopping three line program. That’s right! The actual program is only 3 lines long. An output statement asking for input from the user. Then two procedures to handle the input. Everything else is basicly declaring stuff so the computer will know what to do with the program. Computers are only as smart as they are instructed to be!

Part due

Cradle2b.ex

The next thing we will add [keeping in step with Mr. Crenshaw’s book] is the ability to add or subtract two single numbers. First we need to rename Expression() to Term() then add the fallowing code to expand the abilities of our compiler beond moving a single number on to a single regester.

Below the Expected() procedure and above GetNum() procedure add

procedure Match(integer x) -- test for integer

 if Look = x then GetChar() -- if integer advance 1 character

 else Expected("' + x + '") -- or crash and burn

 end if

end procedure
The code below the Init() procedure, and above – start should now look like this

procedure Term() -- Parse and Translate a Math Expression

 puts(1, "MOVE " & GetNum() & " D0 \n")

end procedure

procedure Add() --Recognize and Translate an Add

 Match('+') -- advance to netx character

 Term() -- check for and move number to DO

 puts(1, "ADD D1,D0\n") -- add the 2 nums

end procedure

procedure Subtract() --Recognize and Translate a Subtract

 Match('-') -- advance to netx character

 Term() -- check for and move number to DO

 puts(1, "SUB DO,D1\n") -- subtract the 2 nums

end procedure

procedure Expression() -- Parse and Translate an Expression

 Term() -- check for and move number to DO

 puts(1, "MOVE DO,D1\n") -- free up first register for next input

 if Look = '+' then Add() -- add the registers

 elsif Look = '-' then Subtract() -- subtract the registers

 else Expected("Addop ") -- trap error

 end if

end procedure

Try this code out, see if it catchs errors. And remembe Mr. Crenshaw saying Subtract() needing 1 more line of code for it to work right? Here’s the modifycation

procedure Subtract() --Recognize and Translate a Subtract

 Match(‘-‘) -- advance to netx character

 Term() -- process character

 puts(1, "SUB D0,D1\n") -- run the number

 puts(1, "NEG D1\n") -- make sign change

end

And like the first program in chapter 1, this is a 1 pass program.

<number> [+ or -] <number> = end

To add the loop to Expression() try this mod to add some flexibility to our parser.

Add the line

 addop = "-+” -- Define addops

to the constants and don’t forget the , (comma) after the last “ in nums, or you’ll grow old figuring out why the program doesn’t run. Also add this function under the IsDigit() function.

function IsAddop(object c) -- Recognize an Alpha Character

 return find(upper(c),addop)

end function

Then mod the Expression() code like so.

procedure Expression() -- Parse and Translate an Expression

 Term() -- check for and move number to DO

 while IsAddop(Look) do -- loop for long addop

 puts(1, "MOVE DO,D1\n") -- free up first register for next input

 if Look = '+' then Add() -- add the registers

 elsif Look = '-' then Subtract() -- subtract the registers

 else Expected("Addop ") -- trap error

 end if

 end while

end procedure
But that will give you an error message when it it hit the end of line “\n” so we need one more line of code to catch the “\n” and gracefuly jump out of the loop. Add this to Expression() under elsif Look = '-' then Subtract()
 elsif Look = '\n' then exit -- end of line check
Easy! Now let’s do a quick mod to use the stack. The output line in Expression() should now look like this.

 puts(1, "MOVE D0,-(SP)\n") – push Do onto the stack
That will dump DO to ram for recall later. The outputs of Add() and Subtract() should be changed to look like this for Add()

 puts(1, "ADD DO SP \n") -- add regesters

and for Subtract()

 puts(1, "SUB DO SP\n") -- run the number

 puts(1, "NEG SP\n") -- make sign change

The full code will be in cradle2b.ex for reference.

III

Cradle2c.ex

Dang’it boy pie r(round) cornbread r(SQR)

OK so we aren’t going to disprove the old man’s theory wrong, but we are going to expand in to factors. So let’s rename Term() to Factor() and add this code under the procedure Factor()

procedure Multiply() --Recognize and Translate a Multiply

 Match(‘*’)

 Factor()

 puts(1, "MULS (SP)+,D0\n")

end procedure

procedure Divide() -- Recognize and Translate a Divide

 Match(‘/’)

 Factor()

 puts(1, "MOVE (SP)+,D1\n")

 puts(1, "DIVS D1,D0\n")

end procedure

procedure Term() --Parse and Translate a Math Term

 Factor()

 while IsMulop(Look) do – check for mulop

 puts(1, "MOVE D0,-(SP)\n")

 if Look = '*' then Multiply()

 elsif Look = '/' then Divide()

 elsif Look ='\n' then exit

 else Expected("Mulop ")

 end if

 end while

end procedure

We should also add another new constants up near the top of our code (rember to add a comma to addop

 mulop ="*/" --Define mulops

Ok we’re getting some where. We have only a couple things to add. First we’ll need to add a Euphoria bultin called routine_id(). See the thing with recursive stuff is sometimes you end up with a chicken before the egg situation. You will be calling procedures before they’re declaired (and computers don’t like that). Routine_id() let’s you assign a numeric value to a procedure then call it with call_proc() So let’s id Expression() by adding this line of code near the top above object Look
-- Look ahead character

integer exp_id -- this is a numeric id used for routine_id()

Then at the bottom of our code below -- start

exp_id = routine_id("Expression")
Next we go to Factor() and soop it up a little. Here’s what it should look like.

procedure Factor() -- Parse and Translate a Math Expression

 if Look ='(' then -- look for parens in input

 Match('(')

 call_proc(exp_id,{}) -- bounce between Expression and Factor

 Match(')')

 else

 puts(1, "MOVE " & GetNum() & " D0 \n")

 end if

end procedure

This will allow complex formulas to be in the input like (1-2)*(3/4) The output looks a little off to me if you fallow it closely but remember we’ll need to go back and redo the output for 80x86 assembly anyway. Now the last thing we’ll worke on in this chapter is the ability to handle the unary minus so our parser can handle stuff like –3-2. the code almot ports itself from Pascle. In Expression() add this just before the call to term

 if IsAddop(Look) then

 puts(1,"CLR D0/n")

 else

And an

End if

After the end while at the end of the procedure, and our code for this chapter will be compleat. Run the code and make sure it works with a verity of different inputs without crashing. Cradle2c.ex contains the compleat code for reference if you have trouble, and don’t forget the Euforum for help.

Sense Mr. Crenshaw covered optimization better then I ever could have, I will not be redundant here. I do think that incorporating his segjestions into the code later on would be a great idea. Maybe a future project? See you next chapter.

