Euphoria add on for “So you want to build a compiler” by Jack Crenshaw.

Copyright 2002 by Alvin Koffman ARS KA9QLQ

With many thanks to Derek Parnell, Irv Mullins, Euman, Matthew Lewis, and so many more. If I forgot you let me know.

I have been interested in programming for years, but something always gets in the way. In taking on this project I hope to accomplish the fallowing.

Teach myself programming in Euphoria.

Pass along what I have learned to others wishing to take up programming at a beginners level.

Add a much needed update to the exclent Ebook Jack Crenshaw wrote back in 1988.

This add on ports Jacks Turbo Pascal (68000 CPU) to the Euphoria language (80x86 CPU). Euphoria is available at http://www.rapideuphoria.com/ I like the way Mr. Crenshaw keeps all his procedures to a few lines because that’s good programming. Though I don’t have Mr. Crenshaw vast knowledge, and experience, and my style will reflect that, I hope to keep this as simple, and as strait forward as possible. You should read “So you want to build a compiler” by Jack Crenshaw FIRST. That will give you the best start, and don’t worry about not knowing the code because we’ll be using the Euphoria code in this add on. Just read his explanation of how a compiler operates and you’ll be 75% of the way there. Remember this is only to help you get his idea to work on your PC and to learn a little Euphoria along the way.

I will keep all the files in this tutorial stored at http://ka9qlq.tripod.com/Euphoria/ with chapters 1-16 and readme .txt files being Mr. Crenshaws. Other files like this Word document, and any code I decide to upload will be available there too.

By the way I’m using Crimson editor available at http://www.crimsoneditor.com/ It is a very nice editor with a lot of features. Pleas copy and past the code to your favorite text editor and run my examples to better understand what is happening.

The Euforum at http://www.topica.com/lists/EUforum/ and is a great place to ask for help. As a matter of fact most of this was written with the help I got there.

I am going to make the fallowing assumptions. You got the brains to download and install Euphoria, and that you know how to save an ASCII text file where you wont loose it, and that you will consult the reference material that comes with Euphoria if you need addisonal information on the language itself. If you get stuck the Euforum is a great place for help, and they are a very friendly group use to answering dumb questions. I should know, most are from me.

Start coding.
Euphoria has a “trace” function that steps through the code letting you see where the programming is going and what the variables are holding at any given time. All you have to do is add

With trace

Trace(1) -- output to screen

Near the beginning of your code. When you don’t need the trace function just comment out the last line with a double dash –

--Trace(1) -- output to screen

I strongly urge you to run the code with and without “trace” to see what your code is doing “under the hood.”

Now just to see if the motor starts try running this VERY simple “cradle”. You should be asked for a one character input and after you hit <enter> get an answer stating that you input an alpha or a numeric character. This is the basic thing ALL computers do

Read input information (from keyboard, mouse, disk, modem ect.).

Process the information.

Write the information (to the screen, disk, modem ect.)

Simple huh? Now copy this to a file and save it as cradle.ex somewhere on your computer, then run it in Euphoria.

include get.e -- for get character functions

include wildcard.e -- for upper()

with trace

--trace(1) -- output to screen

constant

 alpha = "ABCDEFGHIJKLMNOPQRSTUVWXYZ", -- Define alphas

 nums = "0123456789"
-- Define numerics

 object Look
-- Look ahead character

function IsAlpha(object c) -- Recognize an Alpha Character

 return find(upper(c),alpha)

end function

function IsDigit(object c) -- Recognize a Decimal Digit

 return find(c,nums)

end function

procedure GetChar()
-- this grabs a line of characters

 Look = getc(0)
-- this will prosess one character at a time if looped

end procedure

procedure Init() -- initialize program

 GetChar() -- grab a character

end procedure

-- start

 puts(1, "Input a character \n") -- ask for imput

 Init() – initialise program

 puts(1,"\n")
-- Drop a line so you don't over write what you type

 if IsDigit(Look) then puts(1, Look & " is a Numeric\n") -- check for numeric

 elsif IsAlpha(Look) then puts(1, Look & " is an Alpha\n") -- check for an alpha

 end if

Starting at the top we have 2 include calls. The nice thing about include files is a lot of programming is using the same code in different ways to punch out programs. Kind of like how different car models are made up of the same parts. Sometime take a look at some of the .e files included with Euphoria to see how the procedures we use work, just be carefull not to change anything. Next the trace calls we already covered, then we declair some constants [they can’t be changed for any reason, anywhere in the program] to compare the input to. The object we declaired as Look is not a constant but a variable [what it holds will vary depending on the programs needs.] Then we have two functions IsDigit(), and IsAlpha(), and our first procedure called GetChar(). Functions and procedures are a kind of a mini program called to handle a given task. It in turn calls getc() then ends.
Now a couple things to note. First getc() actualy “gets” a whole lot of characters and holds them in a buffer, but will only process one character at a time. To process a line (or more) you have to set things up to repeatedly call getc(). Let’s try a simple modifcation to the code by adding a loop.

include get.e -- for get character functions

include wildcard.e -- for upper()

with trace

--trace(1) -- output to screen

constant

 alpha = "ABCDEFGHIJKLMNOPQRSTUVWXYZ", -- Define alphas

 nums = "0123456789"
-- Define numerics

 object Look
-- Look ahead character

function IsAlpha(object c) -- Recognize an Alpha Character

 return find(upper(c),alpha)

end function

function IsDigit(object c) -- Recognize a Decimal Digit

 return find(c,nums)

end function

procedure GetChar()
-- this grabs a line of characters

 Look = getc(0)
-- this will prosess one character at a time if looped

end procedure

procedure Init() -- initialize program

 GetChar() -- grab a character

end procedure

-- start

 puts(1, "Input a character \n") -- ask for imput

 Init() -- initialise program

 while Look != '\n' do -- if NOT enter key loop else stop

 puts(1,"\n")
-- Drop a line so you don't over write what you type

 if IsDigit(Look) then puts(1, Look & " is a Numeric\n") -- check for numeric

 elsif IsAlpha(Look) then puts(1, Look & " is an Alpha\n") -- check for an alpha

 end if

 GetChar() -- redy next character

 end while --end loop
Save this cradle.ex and run it. Try typing ka9qlq or some other mix of numbers and letters and see what happens. Hay this ain’t rocket science!

Inside the functions is the prosesing part of the program. It uses “find” to compare the input against the alpha, and nums constants so it knows what to output. Now there’s no error trapping yet, but we’ll get to that in the next chapter.

Now granted, were not quite keeping in steep with Mr. Crenshaws cradle. I’m intentionly skipping sub-routeens that aren’t called figuring we can hammer them out as needed later [like he points out in his tutorial] and this cradle does somethig from the get go. So in some ways we’re ahead, and in some ways we’re behind. This is why I said read Mr. Crenshaws book first so you will know where we’re heading even though Mr. Crenshaw, and I don’t stay on the same road.

73

Alvin

